If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+10x+360=0
a = -16; b = 10; c = +360;
Δ = b2-4ac
Δ = 102-4·(-16)·360
Δ = 23140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23140}=\sqrt{4*5785}=\sqrt{4}*\sqrt{5785}=2\sqrt{5785}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{5785}}{2*-16}=\frac{-10-2\sqrt{5785}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{5785}}{2*-16}=\frac{-10+2\sqrt{5785}}{-32} $
| -(n-2)=2(1-n) | | -3q-2q=5 | | 2x-x+12+90=180 | | 155+10m=230+15m | | 4=y−8 | | -8v-58=4v+2 | | 3(10x^-1-7)=9 | | x/9-9=12 | | (-7+6x)+(4-2=x) | | -6+5(8-k)-8k=-1/2(24k-10) | | 8x+13x-41=-20 | | 2(3x+5)=6x-7 | | 1/3x+5=0 | | 0=16t^2+64t+100 | | 8-12x-5=9-x | | 7x-29=-5(8-x) | | 5(x-1)=3(2x-4) | | 203=108-y | | G=2a+2 | | 8^x=189 | | (6-3y)+3y-6=0 | | 1.8(2x-5)=12.6 | | 2.34+11.6-1.11x=1.2x+17 | | 1.8(2x-5)=12.8 | | 4x+7–2x=–15 | | 5x2=3x-12 | | 1x-11=-7 | | 8x+(-9)=-6x-1 | | -2(x+-1)+5x=2(2x-1) | | 6y-8y=-6 | | 17-14w=-19-20w | | 2^x=2.8 |